A FACILE AND ECO-FRIENDLY SYNTHESIS OF 1-METHYL-2-((ALKYLTHIO)METHYL)-1H-BENZIMIDAZOLE

S. Srinivas Rao*, Ch. Venkata Ramana Reddy & P.K. Dubey

Department of Chemistry, Jawaharlal Nehru Technological University Hyderabad College of Engineering, Kukatpally, Hyderabad (A.P.), India – 500 085. E-mail: <u>seenu604@gmail.com</u>

ABSTRACT

A green approach for the synthesis of 1-methyl-2-(alkylthio)-1*H*-benzimidazoles **5** ($R^1 = CH_3$, C_2H_5 , CH_2Ph) under, different conditions has been developed from N-methyl-2thiomethylbenzimidazole (*i.e.* CH₃) **4** by reaction with an alkylating agent by physical grinding or by using green solvent like PEG-600 or by using micro-wave irradiation technique.

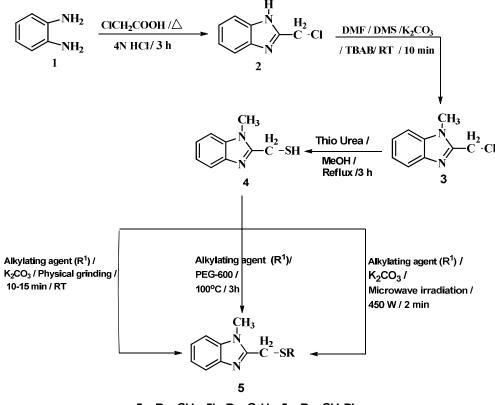
KEYWORDS Green synthesis, benzimidazole, grinding, microwave, MWI, N-methyl-2-chloromethylbenzimidazole,

INTRODUCTION

Benzimidazoles are very useful intermediates/subunits for the development of molecules of pharmaceutical or biological interest¹. Benzimidazoles are an important class of bioactive molecules in the field of drugs and pharmaceuticals^{II}. 2-Mercaptobenzimidazole derivatives having substitution at either the nitrogen or sulfur are reported to exhibit a broad spectrum of biological activity. ^{III-VII}

Aoyama *et al* reported^{VIII} that 2-((methylthio)methyl)-1H-benzimidazole was prepared on treatment of S-methylthio acetic acid with o-phenylenediamine in aq. HCl under reflux for 16 h. 2-thiomethyl benzimidazole on treatment with methyl bromide in sodium methoxide gave 2-((methylthio)methyl)-1H-benzimidazole was reported ^{IX} by Sekikawa. Using this strategy and in continuation of our earlier studies ^{X,XI}, on the preparation of new derivatives of benzimidazole thiol, herein is now report green syntheses of 1-methyl-2-(alkylthio)-1*H*-benzimidazoles. In S-alkylated benzimidazole, S-alkyl is a easily replaced by various nitrogen nucleophiles and the derivatives which are obtained from this are very useful to prepare Schiff's bases, which leads to biological products^{XII}.

RESULTS AND DISCUSSION


Condensation of *o*-phenylenediamine **1** with chloroacetic acid in 4N HCl under reflux for 3 h gave the known 2-(chloromethyl)-1H-benzimidazole **2**. The latter on alkylation with an

alkylating agent such as dimethyl sulfate in the presence of K_2CO_3 in CH₃CN medium using tetra-*n*-butylammonium bromide (TBAB) as phase transfer catalyst at RT for 3 hr gave previously reported [13,14] N-methyl-2-chloromethylbenzimidazole **3**. Reaction of **3** on treatment with thiourea in methanol under reflux for 3 h gave (1-methyl-1H-benzimidazol-2-yl)methanethiol **4**.

Reaction of **4**, independently, with each of dimethyl sulphate (DMS), diethyl sulphate (DES) and benzyl chloride (PhCH₂Cl) in the presence of K₂CO₃, by a simple physical grinding of the reaction mixture in a mortar with a pestle under solvent-free conditions for 10-15 min at RT, followed by processing, gave respectively 1-methyl-2-(methylthio)-1*H*-benzimidazole **5a** (*i.e.*, **5**, R=CH₃), 1-methyl-2-(ethylthio)-1*H*-benzimidazole **5b** (*i.e.*, **5**, R=CH₂CH₃) and 1-methyl-2-(benzylthio)-1*H*-benzimidazole **5c** (*i.e.*, **5**, R=PhCH₂), as the products identical with the ones reported in the earlier methods ^{VIII} in all respects (m.p. m.m.p. and co-tlc analysis).

The reaction was also carried out in PEG-600 as the green solvent. Thus, heating a mixture of 4 with an alkylating agent in PEG-600 for 3h without the use of any added base, followed by simple processing, gave respectively **5a** (*i.e.*, **5**, R=CH₃), **5b** (*i.e.*, **5**, R=CH₂CH₃) and **5c** (*i.e.*, **5**, R=CH₂Ph) identical with the same products obtained above (Scheme I).

Compound 5 could also be prepared by an alternative, green method. Thus, 4 with an alkylating agent and K_2CO_3 as a base under microwave irradiation at RT conditions for 2 min and subsequent processing, gave respectively 5a (*i.e.*, 5, R= CH₃), 5b (*i.e.*, 5, R= CH₂CH₃), 5c (*i.e.*, 5, R= CH₂Ph) identical with the products obtained above (Scheme I).

5a, $R = CH_3$; 5b, $R = C_2H_5$; 5c, $R = CH_2Ph$

Scheme-1 Synthesis of N-alkyl-2-thiomethylbenzimidazole

EXPERIMENTAL

Melting points were determined in open capillaries in sulfuric acid bath and are uncorrected. IR Spectra were recorded with Jasca FT-IR 5300. ¹H NMR and spectra were recorded in CDCl₃ / DMSO using Varian 400-MHz instrument. Mass spectra were recorded on an Agilent LC-MS instrument giving only M⁺ values in Q+1 mode. Thin-layer chromatography (TLC) analyses were carried out on glass plates coated with silica gel GF-254 and visualization was achieved using iodine vapours or UV lamp. Experiments under microwave irradiation were carried out by using the commercially available CEM Discover Microwave Reactor.

Preparation of 5 from 4:

(i) Physical grinding method

A mixture of 4 (10 mM), alkylating agent (10 mM) and K₂CO₃ (1.38g, 10mM) was ground together for about 10-15 min in a mortar with a pestle at RT to obtain a homogeneous mixture. The completion of the reaction was monitored by TLC on silica gel-G plates using authentic samples of the starting material and the target compounds as references. The mixture was then treated with ice-cold water (\approx 30-40 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried to obtain crude **5a-c**. Recrystallization of the crude product from ethyl acetate gave pure **5a-c**. IR, ¹H NMR and LC-MS spectra for the compounds **5a-c** were found to be in agreement with the structures assigned to them. Yields are shown in **Table I**.

(ii) In PEG-600

A mixture of 4 (10 mM), alkylating agent (10 mM) and PEG-600 (20 mL) was heated on a steam-bath at 100°C for 3hr. At the end of this period, the mixture was cooled to RT and poured into ice-cold water (\approx 50 mL). The separated solid was filtered, washed with water (2 × 10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **5a-c**, identical with the same products obtained above. Yields are shown in **Table I**.

(iii) Under Microwave condition

A mixture of 4 (10 mM) and alkylating agent (10 mM) was taken in a 10 mL CEMreaction tube sealed by rubber stopper and subjected to microwave irradiation for 2 min in a commercial micro-wave reactor. After that, the tube was cooled and the completion of reaction was checked by TLC. Then the reaction mixture was poured into ice-cold water (50 mL). The separated solid was filtered, washed with water (2×10 mL) and dried. The crude products were purified by recrystallization from ethyl acetate to obtain pure **5a-c**, identical with the same products obtained above. Yields are shown in **Table I**.

Spectral Data:

I-Methyl-2-(methylthio)-1H-benzimidazole 5a. IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): δ 3.69 (s, 3H, -NCH₃), 2.90 (s, 2H, -CH₂), 2.63 (s, 3H, -SCH₃), 8.13 (d, J = 7.68 Hz, 2H, Ar-H), 7.89 - 7.85 (m, 2H, Ar-H); ¹³C NMR: δ 149.3, 143.6, 138.8, 124.5, 119.0, 117.7, 110.7, 32.2, 18.7 ppm; MS (CI): m/z 179 [M⁺⁺1].

1-methyl-2-(ethylthio)-1H-benzimidazole 5b. IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): δ 3.46 (s, 3H, -NCH₃), 2.87 (s, 2H, -CH₂), 2.75 (s, 3H, -SCH₃), 8.08 (d, J = 7.56 Hz, 2H, Ar-H), 7.79 -

7.65 (m, 2**H**, Ar-H); ¹³C NMR: δ 148.3, 144.5, 136.8, 124.5, 115.0, 116.7, 108.7, 30.2, 22.5, 18.7 ppm; MS (CI): m/z 193 [M⁺⁺+1].

1-methyl-2-(benzylthio)-1H-benzimidazole 5c. IR (KBr): No diagnostic peak in IR region 3500 – 3000 cm⁻¹, indicating absence of -NH group; ¹H- NMR (400 MHz, DMSO-d₆/ TMS): δ 3.52 (s, 3H, -NCH₃), 2.98 (s, 2H, -CH₂), 2.82 (s, 3H, -SCH₃), 8.34 (d, J = 7.66 Hz, 2H, Ar-H), 7.24 (d, J= 7.13 Hz, 2H, Ar-H), 7.16-6.73 (m, J = 6.95 Hz, 5H, Ar-H); ¹³C NMR: δ 149.9, 142.8, 137.8, 137.2, 128.5, 127.9, 125.8, 124.6, 123.6,120.6, 118.2, 111.7, 110.7, 107.9, 49.6, 35.6, 19.3 ppm;; MS (CI): m/z 255 [M⁺⁺+1].

		-										
S.N o.	S M	Reagen t	Produ ct	Physical grinding			Green solvent			Microwave		
							<u>irradia</u>	<u>ation</u>				
							<u>PEG-600</u>					
				Tim	Tem	Yield	Tim	Tem	Yield	Tim	Tem	Yield
				e	p _	*	e	p (⁰ C)	*	e	p (⁰ C)	*
				(Min	(^{0}C)	(%)	(Min	(^{0}C)	(%)	(Min	(^{0}C)	(%)
)))		
		DMS	5a	10-	RT	85	180	100	68	2	RT /	88
				15							450	
											W	
1.	4	DES	5b	10-	RT	87	180	100	73	2	RT /	86
				15							450	
											W	
		PhCH ₂	5c	10-	RT	80	180	100	65	2	RT /	74
		Cl		15							450	
1					1		1		1	1	W	1

 Table -I

 Preparation of 5 from 4 under different green conditions

*Yield refers to isolated crude product only. M.P. of **5a**: $122-25^{\circ}C$ (Lit.^(XI) m.p. $120-24^{\circ}C$) M.P. of **5b**: $98-102^{\circ}C$ (Lit.^(XI) m.p. $96-99^{\circ}C$) M.P. of **5c**: $142-47^{\circ}C$ (Lit.^(XI) m.p. $138-42^{\circ}C$)

CONCLUSION

In conclusion, the use of solvents like DMF / CH_3CN for S-alkylation are not green and hence we have developed a green approach for the synthesis of 1-methyl-2-(alkylthio)-1*H*-benzimidazoles under different conditions.

ACKNOWLEDGEMENT

The authors are indebted to the authorities of Jawaharlal Nehru Technological University Hyderabad for providing facilities.

References

- I. (a) G L Gravatt, B C Baugley, W R Wilson W.A.Denny, J Med Chem, 37, 4338 (1994),
 - (b) J. S. Kim, B. Gatto and L. F. Liu, *Eur J Med Chem*, 39, 992 (1996); (c) T Roth, M L Morningstr, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, *J Med Chem*, 40, 4199 (1997); (d) D A Horton, G T Bourne and M L Smythe, *Chem Rev*, 893 (2003).
- II. (a) G L Gravatt, B C Baugley, W R Wilson and Denny W A, J Med Chem, 37, 4338 (1994); b) B Jayasankara and K M L Rai, Arkivoc 75 (2008); (c) T Roth, M L Morningstar, P L Boyer, S H Hughes, R W Buckheit and C J Michejda, J Med Chem, 40, 4199 (1997).
- III. H Hasegawa, N Tsuda and M Hasoya, *Japanese Pat*, 198 (1974); *Chem Abstr*, (1975), 156308.
- IV. G Rovnyak, V L Narayana, R D Haugwitz and C M Cimarusti, US Pat, 014, (1973); *Chem Abstr*, 1974, 105596.
- V. S C Bell and P H Wei, *J Med Chem*, 19, 524 (1976).
- VI. D R Graber, R A Morge and Raenko, J Org Chem, 52, 4620 (1987).
- VII. N I Korotkikh, G F Raenko and O P Shavaika, *Chem Heterocycl compd*, 31, 359 (1995).
- VIII. A.Hiroshi, T. Ryosuke, I. Yutarao Y. Tsutomu, Org Lett. 15,3794 (2013).
- IX. Sekikawa, "Bull. Chem. Soc. Jpn. 31, 252 (1958).
- X. S.S.Rao, Ch. V.R.Reddy, P.K.Dubey, Der Pharma Chemica, 5, 69 (2013).
- XI. S.S.Rao, P.K. Dubey, Y.B. Kumari, Indian J Chem., 52,1210 (2013).
- XII. G. Prithwish, K.Vijay, M. Rajiv, Syn. Comm, 43, 1882 (2013).
- XIII. F. William, D. David, T. Masse, S.Marsh, Bioorg. Med. Chem., 14, 6695 (2006).

Received on March 3, 2014.